Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Physiol Plant ; 176(2): e14276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566244

RESUMEN

The leaf-specific Catharanthus roseus alkaloid, vindoline, is the major bottleneck precursor in the production of scarce and costly anticancer bisindoles (vincristine and vinblastine). The final steps of its biosynthesis and storage occur in the laticifers. Earlier, we have shown that vindoline content is directly related to laticifer number. Pectin remodeling enzymes, like pectin methylesterase (PME), are known to be involved in laticifer development. A search in the croFGD yielded a leaf-abundant CrPME isoform that co-expressed with a few vindoline biosynthetic genes. Full-length cloning, tissue-specific expression profiling, and in silico analysis of CrPME were carried out. It was found to possess all the specific characteristics of a typical plant PME. Transient silencing (through VIGS) and overexpression of CrPME in C. roseus indicated a direct relationship between its expression and vindoline content. Comparative analysis of transcript abundance and enzyme activity in three familial C. roseus genotypes differing significantly in their vindoline content and laticifer count (CIM-Sushil > Dhawal > Nirmal) also corroborated the positive relationship of CrPME expression with vindoline content. This study highlights the possible role of CrPME, a cell wall remodeling enzyme, in modulating laticifer-associated secondary metabolism.


Asunto(s)
Catharanthus , Vinblastina , Vinblastina/análogos & derivados , Vinblastina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Curr Top Med Chem ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38288805

RESUMEN

BACKGROUND: The genus Costus is the largest genus in the family Costaceae and encompasses about 150 known species. Among these, Costus pictus D. Don (Synonym: Costus mexicanus) is a traditional medicinal herb used to treat diabetes and other ailments. Currently, available treatment options in modern medicine have several adverse effects. Herbal medicines are gaining importance as they are cost-effective and display improved therapeutic effects with fewer side effects. Scientists have been seeking therapeutic compounds in plants, and various in vitro and in vivo studies report Costus pictus D. Don as a potential source in treating various diseases. Phytochemicals with various pharmacological properties of Costus pictus D. Don, viz. anticancer, anti-oxidant, diuretic, analgesic, and anti-microbial have been worked out and reported in the literature. OBJECTIVE: The aim of the review is to categorize and summarize the available information on phytochemicals and pharmacological properties of Costus pictus D. Don and suggest outlooks for future research. METHODS: This review combined scientific data regarding the use of Costus pictus D. Don plant for the management of diabetes and other ailments. A systematic search was performed on Costus pictus plant with anti-diabetic, anti-cancer, anti-microbial, anti-oxidant, and other pharmacological properties using several search engines such as Google Scholar, PubMed, Science Direct, SciFinder, other online journals and books for detailed analysis. RESULTS: Research data compilation and critical review of the information would be beneficial for further exploration of its pharmacological and phytochemical aspects and, consequently, new drug development. Bioactivity-guided fractionation, isolation, and purification of new chemical entities from the plant as well as pharmacological evaluation of the same will lead to the search for safe and effective novel drugs for better healthcare. CONCLUSION: This review critically summarizes the reports on natural compounds, and different extract of Costus pictus D. Don with their potent anti-diabetic activity along with other pharmacological activity. Since this review has been presented in a very interactive manner showing the geographical region of availability, parts of plant used, mechanism of action and phytoconstituents in different extracts of Costus pictus responsible for particular action, it will be of great importance to the interested readers to focus on the development of the new drug leads for the treatment of diseases.

3.
J Pharm Biomed Anal ; 240: 115945, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181556

RESUMEN

Sida is one of the most diverse genera, with about 200 species distributed in tropical and subtropical regions of the world. Among 18 species distributed in India, Sida acuta, Sida cordifolia, Sida rhombifolia, and Sida cordata are used in traditional medicines along with its possible adulterant Abutilon indicum for several therapeutic uses. The non-availability of marker-based validated methods for the identification and classification of these species leads to adulteration. Indoloquinoline and quinazoline are the major bioactive alkaloids distributed in Sida spp. First time, a simple, economical and high throughput method was developed and validated for the simultaneous determination of 20-hydroxyecdysone (1), vasicine (2), vasicinone (3), cryptolepine (4), quindolinone (5), and cryptolepinone (6) using HPTLC-UV densitometry. The method was validated to meet globally accepted ICH guidelines. The method was sensitive with LOD and LOQ ranging from 0.38-0.63 and 1.57-2.12 µg/band. The samples were spiked at 3 different concentrations, the recovery values were 93.49-98.88%. In addition, the greenness index of the HPTLC method was estimated using four different greenness assessment techniques. Targeted HPTLC analysis indicated the distribution of specialized metabolites in Sida spp. and A. indicum. However, the occurrence of cryptolepine in A. indicum was not reported in the literature, so this was further confirmed by liquid chromatographic studies of the samples from different locations. The chromatographic data was statistically evaluated by principal component analysis (PCA) and hierarchical clustering (HCA). HPTLC-based targeted metabolite quantitation explains the adulteration/substitution in Sida raw material and derived herbal preparations.


Asunto(s)
Quimiometría , Malvaceae , Extractos Vegetales/química , Malvaceae/química , Metabolómica , Medicina Tradicional , Cromatografía en Capa Delgada/métodos
4.
Physiol Plant ; 175(5): e13994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882277

RESUMEN

Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.


Asunto(s)
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Temperatura , Vinblastina/química , Vinblastina/metabolismo , Lipocalinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37481788

RESUMEN

Withania Somnifera (WS) is a popular nutritional supplement in the USA, Europe, and Asia, known for its pharmacological effects on neurological disorders. However, the bioanalytical method development, validation, and pharmacokinetics of WS NMITLI-118R AF1 biomarkers Withanolide A (WLD A), Withanone (WNONE), Withanolide B (WLD B), Withaferin A (WF A), and 12 Deoxywithastramonolide (12 DEOXY) in rats have not been comprehensively explored. This study aimed to develop and validate a sensitive and selective LC-ESI-MS/MS method for these biomarkers in male Sprague Dawley rats plasma and brain matrix. Rats were divided into eight groups, each containing five rats. A plant extract of NMITLI-118R AF1 at 50 mg/kg was orally administered to the rats for in-vivo pharmacokinetic investigation. All the analytes had a linear calibration curve (r2 > 0.999), and intra-day and inter-day precision (%) were found in the range of 2.46 - 13.71% and accuracy were within the acceptable range (±15%). The biomarkers of NMITLI-118R AF1 were found stable in in-vitro plasma and simulated gastro-intestinal fluids. The observed (Cmax) and (Tmax) values for the biomarkers in the systemic circulation were WLD A (5.59 ± 0.34 ng/mL, Tmax 1.00 ± 0.00 h), WNONE (6.28 ± 0.41 ng/mL, Tmax 0.95 ± 0.11 h), WLD B (6.45 ± 2.87 ng/mL, Tmax 0.95 ± 0.11 h), WF A (6.50 ± 0.27 ng/mL, Tmax 1.00 ± 0.00 h), and 12 DEOXY (5.68 ± 0.39 ng/mL, Tmax 1.00 ± 0.00 h). In contrast to the old method, our approach exhibits a lower limit of quantification (LLOQ), shorter run time (less than10 min), and enables the detection of WF A and WNONE in fresh rat plasma by other quantitative analysis of mass spectrometry (m/z) [M]+. Shows high sample volumes for both, larger plasma volumes, costlier sample collection techniques dried blood spot (DBS), more expensive solid phase extraction techniques (SPE) and longer analysis time 14 min. Moreover, our method requires a smaller sample volume 10 µL, offers faster analysis time 4 min, and achieves a higher sensitivity 1 ng/mL. This is the first report of a comprehensive study on in-vitro and in-vivo pharmacokinetics of NMITLI-118R AF1 biomarkers, which may aid in further pre-clinical and clinical trial investigations.


Asunto(s)
Espectrometría de Masas en Tándem , Withania , Ratas , Animales , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos , Withania/química , Ratas Endogámicas WF , Extractos Vegetales , Encéfalo , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos
6.
Bioorg Med Chem ; 86: 117300, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146520

RESUMEN

Abnormal epigenetics has been recognised as an early event in tumour progression and aberrant acetylation of lysine in particular has been understood in tumorigenesis. Therefore, it has become an attractive target for anticancer drug development. However, HDAC inhibitors have limited success due to toxicity and drug resistance concerns. Present study deals with design and synthesis of bivalent indanone based HDAC6 and antitubulin ligands as anticancer agents. Two of the analogues 9 and 21 exhibited potent antiproliferative activities (IC50, 0.36-3.27 µM) and high potency against HDAC 6 enzyme. Compound 21 showed high selectivity against HDAC 6 while 9 exhibited low selectivity. Both the compounds also showed microtubule stabilization effects and moderate anti-inflammatory effect. Dual targeted anticancer agents with concomitant anti-inflammatory effects will be more attractive clinical candidates in future.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Ácidos Hidroxámicos/farmacología , Histona Desacetilasas , Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Antiinflamatorios/farmacología , Histona Desacetilasa 6 , Línea Celular Tumoral , Proliferación Celular
7.
Inflammopharmacology ; 31(2): 983-996, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36947299

RESUMEN

Liquiritigenin (LTG) and its bioprecursor isoliquiritigenin(ISL), the main bioactives from roots of Glycyrrhiza genus are progressively documented as a potential pharmacological agent for the management of chronic diseases. The aim of this study was to evaluate the pharmacological potential of liquiritigenin, isoliquiritigenin rich extract of Glycyrrhiza glabra roots (IVT-21) against the production of pro-inflammatory cytokines from activated macrophages as well as further validated the efficacy in collagen-induced arthritis model in rats. We also performed the safety profile of IVT-21 using standard in-vitro and in-vivo assays. Results of this study revealed that the treatment of IVT-21 and its major bioactives (LTG, ISL) was able to reduce the production of pro-inflammatory cytokines (TNF-α, IL-6) in LPS-activated primary peritoneal macrophages in a dose-dependent manner compared with vehicle-alone treated cells without any cytotoxic effect on macrophages. In-vivo efficacy profile against collagen-induced arthritis in Rats revealed that oral administration of IVT-21 significantly reduced the arthritis index, arthritis score, inflammatory mediators level in serum. IVT-21 oral treatment is also able to reduce the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue and mRNA level of pro-inflammatory cytokines in paw tissue in a dose-dependent manner when compared with vehicle treated rats. Acute oral toxicity profile of IVT-21 demonstrated that it is safe up to 2000 mg/kg body weight in experimental mice. This result suggests the suitability of IVT-21 for further study in the management of arthritis and related complications.


Asunto(s)
Artritis Experimental , Glycyrrhiza , Ratas , Ratones , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Extractos Vegetales/uso terapéutico , Glycyrrhiza/metabolismo , Citocinas/metabolismo , Macrófagos
8.
Parasitol Int ; 92: 102675, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36089201

RESUMEN

Researchers are exploring natural resources in search of a new and effective anti-malarial compound to address the challenges in malarial treatment due to emerging incidences of drug-resistant strains. Following background knowledge of traditional medicine, we evaluated the in-vitro and in-vivo anti-malarial efficacy of Putranjiva P. roxburghii (Putranjivaceae) twigs ethanol extracts and fraction (PRT). In-vitro parasite-specific lactate dehydrogenase (pLDH) assay was performed using a chloroquine-sensitive Plasmodium falciparum strain. The results of the in-vitro study were further validated by in-vivo anti-malarial studies on P. berghei Keyberg 173 (K173) infected mice. The crude ethanol extract of the PRT showed the most moderate antiparasitic activity (IC50 = 15.51 µg/mL). In contrast, its butanol fraction extract showed potent activity (IC50 = 5.14 µg/mL) with a selectivity index (SI) of 28.87. Two phytochemicals, viz. 2, 4 dihydroxy-5-(hydroxymethyl) benzoic acid (DHMBA), and quebrachitol (QBC), were identified with anti-parasitic activity (IC50 = 5.01 µg/mL and 0.87 µg/mL) and selectivity index (SI) of 45 and 158. The in-vivo studies confirmed the significant anti-malarial activity of QBC at the dose of 30 and 60 mg/kg body weight with chemo-suppression values of 73.26% and 61.88%, respectively. The present study demonstrates the bioactive marker-based standardization of P. roxburghii twig, the antiplasmodial potential of PRT, and the role of QBC in suppressing parasitemia. The findings of the study support QBC as a prospective lead for a natural product-based adjunct remedy to conventional antiparasitic agents for malarial infectious.


Asunto(s)
Antimaláricos , Malaria , Ratones , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Plasmodium berghei , Estudios Prospectivos , Extractos Vegetales/química , Plasmodium falciparum , Malaria/tratamiento farmacológico , Malaria/parasitología , Resultado del Tratamiento , Etanol
9.
Nat Prod Res ; 37(12): 2024-2030, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35983769

RESUMEN

Alectra parasitica subsp. chitrakutensis (M.A. Rau) K.K. Khanna & An. Kumar (Orobanchaceae) is a parasitic plant indigenous to India. Locally, the plant is known as 'Midaki and Nirgundikand'. It is used to treat fever, piles, cardiovascular disorders, and blood-borne non-infectious diseases by ethnic communities. The phytochemical investigation of A. parasitica subsp. chitrakutensis rhizome led to the isolation of azafrin (1), rehmaionoside-C (2), and mussaenoside (3). Compounds (2) and (3) are being reported for the first time from this plant. Compounds were evaluated for their intercellular glucose uptake activity in basal and insulin-TNF-α-stimulated L6 muscle cells. In particular, rehmaionoside C exhibited activity comparative to metformin, increasing uptake by basal- and insulin-TNF-α-stimulated cells by 4.88- and 3.90-fold and 5.04- and 4.04-fold. While azafrin and mussaenoside have produced 3.03- and 2.36-fold; 4.03- and 3.22-fold increase in intercellular glucose uptake. Compounds did not show toxicities in rat L6 myoblast cells. The study suggests that rehmaionoside-C from A. parasitica subsp. chitrakutensis might activate glucose uptake by insulin mimics and could be a nontoxic anti-diabetes lead for drug discovery.


Asunto(s)
Resistencia a la Insulina , Glicósidos/química , Glicósidos/farmacología , Mioblastos/química , Orobanchaceae/química
10.
Phytomed Plus ; 3(1): 100398, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36570418

RESUMEN

Background: Traditional knowledge and scientific shreds of evidence strongly support the repurpose of Kalmegh (Andrographis paniculata, CIM-MEG19) as an alternate therapy for prophylactic management and treatment of severe acute respiratory syndrome coronavirus (SARS-CoV) and associated health disorders. Purpose: The study aimed to assess the efficacy and safety of the CIM-MEG19 (standardized A. paniculata extract formulation), a proprietary Ayurvedic medicine in the COVID-19 management, clinical recovery, and outcomes in terms of hospitalization days as well as any sign of severity due to drug-drug interaction between CIM-MEG19 TM and standard of care (SoC). Methods: A randomized, parallel-group, active-controlled interventional pilot clinical study was conducted. The Group-A subjects were assigned to CIM-MEG19 add-on to SoC treatment using modern medicine without antiviral drug whereas Group-B patients with SoC treatment using modern medicine and recommended antiviral drug for COVID-19 management. Eighty RTPCR (real-time polymerase chain reaction) positive and eligible COVID-19 patients of age >18 years, having mild or moderate severity, were enrolled. Results: Clinical improvement in reduction of symptoms showed significant (p<0.0001) results in the average days in subjects of group-A (Investigational intervention arm) compared to Group B (SoC). The RT-PCR investigation exhibited COVID negative for 50 % in CIM-MEG19 add-on and 47% in SoC treatment after 8-11 days. Similarly, biochemical investigations showed that CIM-MEG19 group-A had a significant (p ≤ 0.05) effect on C-Reactive Protein (CRP) and Interleukin-6 (IL-6) after 14 days of treatment. Additionally, improvement in D-Dimer, ESR, and LDH in CIM-MEG19 add-on therapy was also observed. Conclusions: The study demonstrated an excellent safety profile, declining the severity of the infection and halting the disease advancement/progression. CIM-Meg19 might be used as a potential natural drug for treating COVID-19.

11.
Front Plant Sci ; 13: 1042222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420038

RESUMEN

Andrographis paniculata, commonly known as kalmegh is among the most popular medicinal herbs in Southeast Asia. It is widely cultivated for medicinal purposes. The bioactive molecule, Andrographolide accumulated in herb leaves has immense therapeutic and economic potential. However, comprehensive information regarding genetic diversity is very limited in this species. The present study assessed genetic diversity between and within the six populations (ecotypes) of twenty-four kalmegh accessions using multiple datasets (agro-morphological traits, phytochemical traits, and genic markers). This is the established report where EST-SSR (Expressed sequence tags-Simple Sequence Repeat) markers have been used to unlock genetic variation in kalmegh. Here, we identified and developed ninety-one metabolic pathway-specific EST-SSR markers. Finally, 32 random EST-SSR primer pairs were selected for genetic diversity assessment. Multivariate analysis to unveil the agro-morphological, phytochemical and genotypic variability was helpful in discriminating various germplasms studied in the present study. Among all the morphological discriptors used in present study, days to fifty percent flowering and dry herb yield were found as potential selection index for AP genetic improvement. Hierarchical cluster analysis built with agro-morphological data identified three major groups. However, corresponding analysis with phytochemical and molecular data generated two clear-cut groups among the studied individuals. Moreover, the grouping of individuals into different clusters using multiple datasets was geographically independent, and also showed inconsistency in grouping among agromorphological, phytochemical and molecular dataset based clusters. However, joint analysis using agro-morphological, phytochemical and genotypic information generated two genetic groups, which could be a valuable resource for identifying complementary crossing panels in the kalmegh breeding program. The accessions AP7, AP13, AP5, AP3 belong to cluster I and accessions AP17, AP18 belong to cluster II could be utilized as potential donors for high dry herb yield and andrographolide content, respectively in different selective breeding programs of AP. Thus, our results provided useful information about the overall genetic diversity and variation in economic traits useful for initiating selective breeding programs for contrasting traits of interest and maximizing genetic gain in kalmegh.

12.
Nucleus (Calcutta) ; 65(3): 303-320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407558

RESUMEN

The positive effect of herbal supplements on aging and age-related disorders has led to the evolution of natural curatives for remedial neurodegenerative diseases in humans. The advancement in aging is exceedingly linked to oxidative stress. Enhanced oxidative stress interrupts health of humans in various ways, necessitating to find stress alleviating herbal resources. Currently, minimal scientifically validated health and cognitive booster resources are available. Therefore, we explored the impact of plant extracts in different combinations on oxidative stress, life span and cognition using the multicellular transgenic humanized C. elegans, and further validated the same in Mus musculus, besides testing their safety and toxicity. In our investigations, the final product-the HACBF (healthy ageing cognitive booster formulation) thus developed was found to reduce major aging biomarkers like lipofuscin, protein carbonyl, lipid levels and enhanced activity of antioxidant enzymes. Further confirmation was done using transgenic worms and RT-PCR. The cognitive boosting activities analyzed in C. elegans and M. musculus model system were found to be at par with donepezil and L-dopa, the two drugs which are commonly used to treat Parkinson's and Alzheimer's diseases. In the transgenic C. elegans model system, the HACBF exhibited reduced aggregation of misfolded disease proteins α-synuclein and increased the health of nicotinic acetylcholine receptor, levels of Acetylcholine and Dopamine contents respectively, the major neurotransmitters responsible for memory, language, learning behavior and movement. Molecular studies clearly indicate that HACBF upregulated major genes responsible for healthy aging and cognitive booster activities in C. elegans and as well as in M. musculus. As such, the present herbal product thus developed may be quite useful for healthy aging and cognitive boosting activities, and more so during this covid-19 pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s13237-022-00407-1.

13.
Front Nutr ; 9: 1038902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386946

RESUMEN

Vitamin B12 deficiency is prevalent among individuals globally. Inadequate consumption of B12 rich diet and low bioavailability (due to diet based/physiological factors) are linked to the deficiency of Vitamin B12 inside the body. Bioavailability enhancers augment the bioavailability of an ingested substance (drug/nutrient) thus increasing their concentration inside the body and maximizing their therapeutic benefits. In traditional medicine, Licorice (Glycyrrhiza glabra) finds utility in the treatment of various health conditions. Thus, the present study aimed to examine the potential of ethanolic extract obtained from G. glabra roots to enhance the bioavailability of Vitamin B12. The effect of ethanolic extract of G. glabra (GgEtOH) on intestinal absorption enhancement of B12 was assessed in vitro on Caco-2 and ex-vivo everted gut sac models. The influence of extract on the pharmacokinetics of Vitamin B12 was determined in vivo in Swiss albino mice. GgEtOH significantly enhanced the permeation (Papp) of B12 by 2-5 fold in vitro (25, 50, and 100 µg/ml concentrations) and ex-vivo (250 and 500 µg/ml concentrations). The pharmacokinetic parameters of B12 such as Cmax, AUC, Tmax, etc. were also significantly elevated in vivo upon oral administration of B12 (1 mg/kg dose) in combination with GgEtOH (100 and 1,000 mg/kg dose). These preliminary findings indicate that the ethanolic extract of G. glabra is capable of enhancing the bioavailability of Vitamin B12. To the best of our knowledge, this is the first report to demonstrate herbal extract-mediated enhancement of Vitamin B12 bioavailability through in vitro, ex vivo, and in vivo assays.

14.
Transgenic Res ; 31(6): 625-635, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36006545

RESUMEN

Pyrethrins are widely accepted as natural insecticides and offers several advantages of synthetic compounds, i.e., rapidity of action, bioactivity against a wide range of insects, comparatively lesser costs and the like. A significant source of pyrethrin is Chrysanthemum cinerariaefolium; cultivated in restricted areas, as a result; natural pyrethrins are not produced in a large amount that would meet the ongoing global market demand. However, increasing its content and harnessing the desired molecule did not attract much attention. To enhance the production of pyrethrins in Tagetes erecta, the Chrysanthemyl diphosphate synthase (CDS) gene was overexpressed under the promoter CaMV35S. Hypocotyls were used as explant for transformation, and direct regeneration was achieved on MS medium with 1.5 mg L-1 BAP and 5.0 mg L-1 GA3. Putative transgenics were screened on 10 mgL-1 hygromycin. After successful regeneration, screening and rooting process, the transgenic plants were raised inside the glass house and PCR amplification of CDS and HYG-II was used to confirm the transformation. Biochemical analysis using HPLC demonstrated the expression levels of the pyrethrin, which was approx. twenty-six fold higher than the non-transformed Tagetes plant.


Asunto(s)
Chrysanthemum cinerariifolium , Insecticidas , Piretrinas , Tagetes , Piretrinas/química , Piretrinas/metabolismo , Tagetes/genética , Tagetes/metabolismo , Difosfatos/metabolismo , Chrysanthemum cinerariifolium/genética , Chrysanthemum cinerariifolium/metabolismo , Insecticidas/metabolismo
15.
Front Plant Sci ; 13: 896856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991388

RESUMEN

Bacopa monnieri is the main source of pharmaceutically important bacosides; however, the low content of these molecules in planta remains a limiting factor for fulfilling the industrial requirement. The accumulation of secondary metabolites can be enhanced in plants upon inoculation with endophytes. In this study, we isolated and analyzed the culturable endophytes associated with different plant parts. By analyzing their impact on plant growth parameters (in vitro and in vivo) and Bacoside A content, we found few candidates which increased bacoside accumulation significantly. Finally, two promising endophytes namely Bacillus subtilis (OK070745) and Klebsiella aerogenes (OK070774) were co-cultivated with B. monnieri cuttings singly and in combination mode to clarify their effect on bacoside biosynthesis and their accumulation in B. monnieri shoot. Consortium-inoculated plants significantly enhanced the plant biomass and Bacoside A content with respect to single inoculation. The results of real-time quantitative (RT-PCR) revealed significant accumulation of bacoside biosynthetic pathway transcripts (HMGCR, PMVK, FDPS, SQS, and ß-AS) in the case of plants inoculated with microbial combination, while the single inoculation of B. subtilis diverted the plant's machinery toward the synthesis of phenylpropanoid genes like CCR, CAD, CHS, and HST. In addition, higher expression of MYB 2 and WRKY 1 transcription factors in combinational treatment points out their probable role in better physiological and developmental processes. Altogether, this is the first study on B. monnieri-endophyte interaction showing improvement in the accumulation of bacoside A by modulating various genes of metabolic pathway and thus suggests an effective "green approach" for augmenting in planta production of pharmaceutically important bacosides.

16.
Food Chem ; 396: 133647, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820286

RESUMEN

Marigold (Tagetes erecta L.) petals are the primary industrial source of lutein, which is used as a colouring agent and nutrient supplement to foods. This research extracted marigold petals using different solvents, covering conventional and non-toxic green solvents. The oleoresin, free lutein, and recrystallized lutein yields varied from 8.47-16.67%, 2.56-9.62%, and 1.11-1.61%, respectively. The purity of lutein was achieved up to 92.57% and 97.64% in conventional and newly established green methods, respectively. The present study described an efficient green process to isolate lutein with significantly improved yield (2.56%) and purity (97.33%) over the conventional methods. Based on the results, 2-methyltetrahydrofurancould be a practical green alternative to the traditional toxic solvents for the processing of lutein. Further, the chemical analysis of the essential oil of the residual receptacles obtained after removing petals revealed the presence of important organic volatiles, including piperitone (54.7%) and piperitenone oxide (6.5%), indicating its usefulness for value-addition.


Asunto(s)
Calendula , Tagetes , Flores/química , Luteína/química , Solventes , Tagetes/química
17.
J Ethnopharmacol ; 293: 115274, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405253

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Duranta erecta Linn. belonging to the Verbenaceae family is widely used in the traditional systems of medicines practiced in Bangladesh, India, Nigeria, the Philippines, and Brazil. The ethnomedicinal application as vermifuge, febrifuge, diuretic, anti-parasitic, and anti-malarial are well documented. D. erecta is also a significant source of phenylethanoid glycoside known as acteoside-a drug in clinical trials for IgA nephropathy patients. AIM OF THIS REVIEW: This review aims to critically highlight the existing studies on D. erecta, including its botanical authentication, geographical distribution, ethnomedicinal uses, phytochemistry, and pharmacological properties. Critical discussion is focused on the overview and gap in knowledge for future research. Additionally, the clinical significance of its major secondary metabolite, i.e., acteoside, has also been discussed with emphasis on biosynthesis, distribution, pre-clinical, and clinical outcomes. MATERIALS AND METHODS: Professional research data from 1963 to 2021 appeared in scholarly journals, and books were retrieved from scientific database platforms viz. Sci-Finder, PubMed, CNKI, Science Direct, Web of Science, Wiley, Google Scholar, Taylor and Francis, Springer, and Scopus. The chemical structures for all the phytomolecules were validated using Sci-finder and first-hand references. While plant name and synonyms were corroborated by "The Plant List" (www.theplantlist.org). RESULTS: D. erecta and its key metabolite acteoside display various biological actions like antimalarial, antimicrobial, antioxidant, anticancer, antinephritic, hepatoprotective, neuroprotective, and antiviral properties. Acteoside literature analysis shows its presence in different stages of clinical trials for anti-nephritic, hepatoprotective, and osteoarthritic activity. The phytochemical review of D. erecta exhibited 64 compounds that have been isolated and identified from D. erecta, such as iridoid glycosides, phenylethanoid glycosides, flavonoids, steroids, phenolics, terpenoids, and saponins. The other significant secondary metabolites responsible for its medicinal properties are acteoside, durantol, pectolinaringenin, repenins, scutellarein, and repennoside. CONCLUSION: Duranta erecta is one of the Verbenaceae plants, widely used in ethnomedicines having various phytochemicals with understandable pharmacological actions mainly confined at the crude extract level. However, further bioactivity-guided or fingerprint-assisted studies are required to validate the ethnomedicinal uses, concerning cellular and molecular mechanisms, quality standardization, and safety with respect to its bioactive constituent(s). Therefore, the present review identified the gap in the research on scientific validation of Duranta based ethnomedicines and may provide critical information for the development of phytopharmaceuticals/Phyto-cosmeceuticals.


Asunto(s)
Medicina Tradicional , Verbenaceae , Animales , Drosophila , Etnofarmacología/métodos , Glicósidos , Humanos , Medicina Tradicional/métodos , Fitoquímicos/uso terapéutico , Fitoquímicos/toxicidad , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
18.
Environ Geochem Health ; 44(12): 4299-4309, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34994919

RESUMEN

Prishanparni (Uraria picta Desv.), a critically endangered annual shrub belonging to the family 'Papillionaceae'. It is widely distributed throughout India, Sri Lanka, Bangladesh, Tropical Africa, Malay Islands, and the Philippines. The consistent performances of U. picta accessions based on ten economic traits studied were identified as P-12, P-16, P-21, P-22, P-31, P-47, and P-48. These accessions could be used for commercial cultivation in northern Indian plains. Among the total twenty-three studied accessions P-50, P-21, P-48, and P-47 were found superior for rhoifolin content in their aerial as well as root part, which may have various therapeutic potentials used in traditional and modern systems of medicines. These accessions can be exploited for commercial cultivation or in a hybridization program for further crop improvement. Wide range cultivation of the selected accessions in the Indo-Gangetic plains will fit in the existing cropping systems of this region, resulting in comparatively better supplementation of herb to the pharmaceutical and herbal drug industries and reducing the pressure on the wild populations.


Asunto(s)
Fabaceae , Genotipo , África , India , Bangladesh
19.
Protoplasma ; 259(3): 755-773, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34459997

RESUMEN

Vindoline is an important alkaloid produced in Catharanthus roseus leaves. It is the more important monomer of the scarce and costly anticancer bisindole alkaloids, vincristine, and vinblastine, as unlike catharanthine (the other monomer), its biosynthesis is restricted to the leaves. Here, biotic (bacterial endophyte, phytoplasma, virus) and abiotic (temperature, salinity, SA, MeJa) factors were studied for their effect on vindoline accumulation in C. roseus. Variations in vindoline pathway-related gene expression were reflected in changes in vindoline content. Since allene oxide cyclase (CrAOC) is involved in jasmonate biosynthesis and MeJa modulates many vindoline pathway genes, the correlation between CrAOC expression and vindoline content was studied. It was taken up for full-length cloning, tissue-specific expression profiling, in silico analyses, and upstream genomic region analysis for cis-regulatory elements. Co-expression analysis of CrAOC with vindoline metabolism-related genes under the influence of aforementioned abiotic/biotic factors indicated its stronger direct correlation with the tabersonine-to-vindoline genes (t16h, omt, t3o, t3r, nmt, d4h, dat) as compared to the pre-tabersonine genes (tdc, str, sgd). Its expression was inversely related to that of downstream-acting peroxidase (prx) (except under temperature stress). Direct/positive relationship of CrAOC expression with vindoline content established it as a key gene modulating vindoline accumulation in C. roseus.


Asunto(s)
Alcaloides , Catharanthus , Alcaloides/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Vinblastina/análogos & derivados , Vinblastina/metabolismo
20.
AAPS PharmSciTech ; 22(8): 259, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34704177

RESUMEN

Cliv-92 is a mixture of three structurally similar coumarinolignoids and a proven hepatoprotective agent. Low aqueous solubility and poor bioavailability are notable hindrances for its further use. Therefore, glycyrrhetinic acid-linked chitosan nanoparticles loaded with Cliv-92 were prepared for active targeting to the liver. The nanoparticles were prepared by the ionic gelation method to avoid the use of toxic solvents/rigorous agitation. The method of preparation was optimized using a central composite design with independent variables, namely polymer: drug ratio (3:1, w/w), crosslinker concentration (0.5%), and stirring speed (750 rpm). The optimized nanoparticles had a mean particle size of 185.17 nm, a polydispersity index of 0.41, a zeta potential of 30.93 mV, and a drug loading of 16.30%. The prepared formulation showed sustained release of approximately 63% of loaded Cliv-92 over 72 h. The nanoparticles were freeze-dried for long-term storage and further characterized. The formulation was found to be biocompatible for parenteral delivery. In vivo imaging study showed that optimized nanoparticles were preferentially accumulated in the liver and successfully targeting the liver. The present study successfully demonstrated the improved pharmacokinetic properties (≈12% relative bioavailability) and efficacy profile (evidenced by in vivo and histopathological studies) of fabricated Cliv-92 nanoparticles.


Asunto(s)
Quitosano , Ácido Glicirretínico , Nanopartículas , Portadores de Fármacos , Tamaño de la Partícula , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...